Part Number Hot Search : 
UPD3788D BZT52C43 TDA3755 TC835CBU 73F07 B1312BS1 SJ2148 55C24
Product Description
Full Text Search
 

To Download IR21271 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 Data Sheet No. PD60143-O
IR2127(S) / IR2128(S) IR21271(S) & (PbF) CURRENT SENSING SINGLE CHANNEL DRIVER
Features
* * Floating channel designed for bootstrap operation
Fully operational to +600V Tolerant to negative transient voltage dV/dt immune Application- specific gate drive range: Motor Drive: 12 to 20V (IR2127/IR2128) Automotive: 9 to 20V (IR21271) Undervoltage lockout 3.3V, 5V and 15V input logic compatible FAULT lead indicates shutdown has occured Output in phase with input (IR2127/IR21271) Output out of phase with input (IR2128)
Product Summary
VOFFSET IO+/VOUT VCSth ton/off (typ.) 600V max. 200 mA / 420 mA
(IR2127/IR2128)
Description
* * * * * * Avaliable in Lead-Free
12 - 20V
(IR21271)
9 - 20V
250 mV or 1.8V 200 & 150 ns
The IR2127/IR2128/IR21271(S) is a high voltage, high speed power MOSFET and IGBT driver. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL outputs, down to 3.3V. The protection circuity detects over-current in the driven power transistor and terminates the gate drive voltage. An open drain FAULT signal is provided to indicate that an over-current shutdown has occurred. The output driver features a high pulse current buffer stage designed for minimum cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side or low side configuration which operates up to 600 volts.
Packages
8-Lead PDIP 8-Lead SOIC
Typical Connection
V CC IN FAULT COM VB HO CS VS
V CC IN FAULT
IR2127/IR21271
(Refer to Lead Assignments for correct pin configuration). This/These diagram(s) show electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
V CC IN FAULT
V CC IN FAULT COM
VB HO CS VS
IR2128
www.irf.com
1
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Absolute Maximum Ratings
Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The Thermal Resistance and Power Dissipation ratings are measured under board mounted and still air conditions.
Symbol
VB VS VHO VCC VIN VFLT VCS dVs/dt PD RthJA TJ TS TL
Definition
High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Logic Input Voltage FAULT Output Voltage Current Sense Voltage Allowable Offset Supply Voltage Transient Package Power Dissipation @ TA +25C Thermal Resistance, Junction to Ambient Junction Temperature Storage Temperature Lead Temperature (Soldering, 10 seconds) (8 Lead DIP) (8 Lead SOIC) (8 Lead DIP) (8 Lead SOIC)
Min.
-0.3 VB - 25 VS - 0.3 -0.3 -0.3 -0.3 VS - 0.3 -- -- -- -- -- -- -55 --
Max.
625 VB + 0.3 VB + 0.3 25 VCC + 0.3 VCC + 0.3 VB + 0.3 50 1.0 0.625 125 200 150 150 300
Units
V
V/ns W C/W
C
Recommended Operating Conditions
The Input/Output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The VS offset rating is tested with all supplies biased at 15V differential.
Symbol
VB VS VHO VCC VIN VFLT VCS TA
Definition
High Side Floating Supply Voltage High Side Floating Offset Voltage High Side Floating Output Voltage Logic Supply Voltage Logic Input Voltage FAULT Output Voltage Current Sense Signal Voltage Ambient Temperature (IR2127/IR2128) (IR21271)
Min.
VS + 12 VS + 9 Note 1 VS 10 0 0 VS -40
Max.
VS + 20 VS + 20 600 VB 20 VCC VCC VS + 5 125
Units
V
C
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip DT97-3 for more details).
2
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, CL = 1000 pF and TA = 25C unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Figure 3.
Symbol
ton toff tr tf tbl tcs tflt
Definition
Turn-On Propagation Delay Turn-Off Propagation Delay Turn-On Rise Time Turn-Off Fall Time Start-Up Blanking Time CS Shutdown Propagation Delay CS to FAULT Pull-Up Propagation Delay
Min.
-- -- -- -- 500 -- --
Typ. Max. Units Test Conditions
200 150 80 40 700 240 340 250 200 130 65 900 360 510 ns VS = 0V VS = 600V
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V and TA = 25C unless otherwise specified. The VIN, VTH and IIN parameters are referenced to COM. The VO and IO parameters are referenced to V S.
Symbol
VIH VIL VCSTH+ VOH VOL ILK IQBS IQCC IIN+ IINICS+ ICSVBSUV+ VBSUVIO+ IORon, FLT
Definition
Logic "1" Input Voltage Logic "0" Input Voltage Logic "0" Input Voltage Logic "1" Input Voltage CS Input Positive Going Threshold Low Level Output Voltage, VO Offset Supply Leakage Current Quiescent VBS Supply Current Quiescent VCC Supply Current Logic "1" Input Bias Current Logic "0" Input Bias Current "High" CS Bias Current "High" CS Bias Current VBS Supply Undervoltage Positive Going Threshold VBS Supply Undervoltage Negative Going Threshold (IR2127/IR2128) (IR21271) (IR2127/IR2128) (IR21271) (IR2127/IR21271) (IR2128) (IR2127/IR21271) (IR2128) (IR2127/IR2128) (IR21271)
Min.
3.0 -- 180 -- -- -- -- -- -- -- -- -- -- 8.8 6.3 7.5 6.0 200 420 --
Typ. Max. Units Test Conditions
-- -- 250 1.8 -- -- -- 200 60 7.0 -- -- -- 10.3 7.2 9.0 6.8 250 500 125 -- V 0.8 320 -- 100 100 50 400 120 15 1.0 1.0 1.0 11.8 8.2 10.6 7.7 -- mA -- -- VO = 0V, VIN = 5V PW 10 s VO = 15V, VIN = 0V PW 10 s A mV V mV IO = 0A IO = 0A VB = VS = 600V VIN = 0V or 5V VIN = 5V VIN = 0V VCS = 3V VCS = 0V VCC = 10V to 20V
High Level Output Voltage, VBIAS - VO
V
Output High Short Circuit Pulsed Current Output Low Short Circuit Pulsed Current FAULT - Low on Resistance
www.irf.com
3
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Functional Block Diagram IR2127/IR21271
VCC UV DETECT UP SHIFTERS IN PULSE GEN VB DELAY FAULT PULSE FILTER DOWN SHIFTER PULSE GEN Q R S + CS VS
HV LEVEL SHIFT
VB R R S Q
BUFFER
PULSE FILTER
HO
Q
R S
COM
Functional Block Diagram IR2128
VB 5V UP SHIFTERS IN PULSE GEN VB DELAY FAULT PULSE FILTER DOWN SHIFTER PULSE GEN Q R S + CS VS UV DETECT
HV LEVEL SHIFT
VCC R R S Q
BUFFER
PULSE FILTER
HO
Q
R S
COM
4
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Lead Definitions
Symbol
VCC IN
FAULT
Description
Logic and gate drive supply Logic input for gate driver output (HO), in phase with HO (IR2127/IR21271) out of phase with HO (IR2128) Indicates over-current shutdown has occurred, negative logic Logic ground High side floating supply High side gate drive output High side floating supply return Current sense input to current sense comparator
COM VB HO VS CS
Lead Assignments
8 Lead PDIP
8 Lead SOIC
IR2127/IR21271
IR2127S/IR21271S
8 Lead PDIP
8 Lead SOIC
IR2128 www.irf.com
IR2128S 5
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
IN (IR2128)
IN
IN (IR2128)
50%
50%
(IR2127/ IR21271)
CS
50%
50%
IN
(IR2127/ t IR21271) on
tr
90%
toff
90%
tf
FAULT
HO
10%
10%
Figure 2. Switching Time Waveform Definition HO Figure 1. Input/Output Timing Diagram
IN (IR2128)
IN
50%
50%
(IR2127/ IR21271)
CS
tbl
90%
HO
FAULT
Figure 3. Start-up Blanking Time Waveform Definitions
VCSTH CS tcs HO
90%
VCSTH CS tflt
FAULT
90%
Figure 4. CS Shutdown Waveform Definitions
Figure 5. CS to FAULT Waveform Definitions
6
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
500
500 400 M ax. 300 200 100 0 10 12 14 16 18 20
Turn-On Delay Time (ns)
300 Max. 200 100 Typ 0 -50 -25
Turn-On Delay Time (ns)
400
T yp .
0
25
50
75
100
125
Tem pe rature o (C) Temperature ( C)
VBIAS Supply Voltage (V)
Figure 10A Turn-On Time vs. Temperature
Figure 10B Turn-On Time vs. Supply Voltage
350
Turn-On Delay Time (ns)
500 400
300 250 200 150 100 50 0 0 2 4 6 8 10 12 14 16 18 20
Turn-Off Delay Time (ns)
300 Max 200 100 Typ. 0 -50 -25 0 25 50 75 Tem perature (C) 100 125
Input Voltage (V)
Temperature ( o C)
Figure 10C Turn-On Time vs. Input Voltage
Figure 11A Turn-Off Time vs. Temperature
500
400 350
Turn-Off Delay Time (ns)
400 300 Max. 200 100 0 10 12 14 16 18 20 Typ.
Turn-Off Delay Time (ns)
300 250 200 150 100 50 0 0 2 4 6 8 10 12 14 Input V oltage (V ) 16 18 20 Typ. Ma x .
VBIAS Supply Voltage (V)
Figure 11B Turn-Off Time vs. Supply Voltage
Figure 11C Turn-OffTime vs. Input Voltage
www.irf.com
7
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
500
Turn-On Rise Time (ns) Turn-On Rise Time (ns)
500 400 300 200 100 0 10 12 14 16 18 20 Max. Typ.
400 300 200 100 Max . Typ -25 0 25 50 75 100 125
Temperature ( o C) Tem perature (C)
0 -50
VBIAS Supply Voltage (V)
Figure 12A Turn-On Rise Time vs. Temperature
Figure 12B Turn-On Rise Time vs. Supply Voltage
200
200
Turn-Off Fall Time (ns)
Turn-Off Fall Time (ns)
150
150
100 Max. 50 Typ 0 . -50 -25
100
Max. Typ.
50 0
0
25
50
75
100
125
Te mperature (C)
10
12
14
16
18
20
Temperature ( o C)
VBIAS Supply Voltage (V)
Figure 13A Turn-Off Fall Time vs. Temperature
Figure 13B Turn-Off Fall Time vs. Voltage
1400 1200 1000 800 600 400 200 0 -50 Min. Max. Typ
Start-Up Blanking time (ns) (ns ) Start-Up Blanking Time
1600
Start-Up Blanking Time (ns)
1600 1400 1200 1000 800 600 400 200 0 10 12 14 16 18 20
Vcc Supply Voltage (V)
Max. Typ. Min.
-25
0 25 50 Temperature ( o C)
75
100
125
Figure 14A Start-Up Blanking Time vs. Temperature
Figure 14B Start-Up Blanking Time vs Voltage
8
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
CS Shutdown Propagation Delay (ns)
CS Shutdown Propagation Delay (ns)
500 400 300 200 100 0 -50 M ax . Typ.
500 M AX. 400 300 200 100 0 10 12 14 16 18 20 Vcc Supply Voltage(V) Vcc Supply Voltage (V) Typ.
-25
0
25
50
75
100
125
Temperature ( o C)
Figure 15A CS Shutdown Propagation Delay vs. Temperature
Figure 15B CS Shutdown Propagation Delay vs. Voltage
800
800
CS to FAULT Pull-Up PropagationTim e (ns) (ns) Delay Delay Time
700 600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ Max.
CS to FAULT Pull-Up Propagation Delay Time (ns) Time (ns)
700 600 500 400 300 200 100 0 10 12 14 16 VCC Supply Voltage (V) 18 20 Typ Max.
Temperature ( o C)
Figure 16A CS to FAULT Pull-Up Propagation Delay vs. Temperature
Figure 16B CS to FAULT Pull-Up Propagation Delay vs. Voltage
8 7 6 5 4 3 2 1 0 -50 -25 0 25 50 75 100 125 Min.
8 7 6 5 4 3 2 1 0 10 12 14 16 VCC Supply Voltage (V) VCC Supply Voltage (V) 18 20 Min.
Input Voltage (V)
Temperature ( o C)
Figure 17A Logic "1" Input Voltage (IR2127) Logic "0" Input Voltage (IR2128) vs Temperature
Input Voltage (V)
Figure 17B Logic "1" Input Voltage (IR2127) Logic "0" Input Voltage (IR2128) vs Voltage
www.irf.com
9
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
4 3.2
4 3.2
Input Voltage (V)
Input Voltage (V)
2.4 1.6 0.8 0 -50
2.4 1.6 M ax 0.8 0
-25
50 Temperature ( o C)
0
25
75
100
125
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 18A Logic "0" Input Voltage (IR2127) Logic "1" Input Voltage (IR2128) vs Temperature
Figure 18B Logic "0" Input Voltage (IR2127) Logic "1" Input Voltage (IR2128) vs Voltage
CS Input Positive Going Voltage m(V)
500 400 300 200 100 Min. 0 -50 -25 0 25 50 75 100 125 Max. Typ.
CS Input Positive Going Voltage (mV)
500 400 300 200 100 0 10 12 14 16 18 20 Max.
Typ. Min.
Temperature ( o C)
Vcc Vcc Supply Voltage (V) Supply Voltage (V)
Figure 19A CS Input Positive Going Voltage vs Temperature (IR2127/IR2128)
Figure 19B CS Input Positive Going Voltage vs Voltage (IR2127/IR2128)
1
1
High Level Output Voltage (V)
0.8 0.6 0.4 0.2 Max.
High Level Output Voltage (V)
0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 Max.
0 -50
-25
0
25
50
75
100
125
Temperature ( o C)
Vcc Supply Voltage (V)
Figure 20A High Level Output vs Temperature
Figure 20B High Level Output vs Voltage
10
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
1
1
Low Level Output Voltage (V)
0.8 0.6 0.4 0.2 Max.
Low Level Output Voltage (V)
0.8 0.6 0.4 0.2 0 10 12 14 16 18 20 Max.
0 -50
-25
0
25
50
75
100
125
Temperature ( oC)
Vcc Supply Voltage (V)
Figure 21A Low Level Output vs Temperature
Figure 21B Low Level Output vs Voltage
Offset Supply Leakage Current (uA)
500 400 300 200 100 0 -50 -25 0 25 50 75 100 125
500
Offset Supply Leakage Current (uA)
400 300 200 100 0 0 100 200 300 400 500 600
Max.
Max.
Temperature (o C)
VB Boost Voltage (V)
Figure 22A Offset Supply Current vs Temperature
Figure 22B Offset Supply Current vs Voltage
800
800
VBS Supply Current (uA)
600 500 400 300 200 100 0 -50 -25 0 25 50 75 100 125 Typ. M ax.
VBS Supply Current (uA)
700
700 600 500 400 300 200 100 0 10 12 14 16 18 20 Typ. M ax.
Temperature (o C)
Vcc Supply Voltage (V)
Figure 23A VBS Supply Current vs Temperature
Figure 23B VBS Supply Current vs Voltage
www.irf.com
11
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
300
Vcc Supply Current (uA) Vcc Supply Current (uA)
300 250 200 150 100 50 0 10 Typ 12 14 16 18 20 Max .
250 200 150 100 50 0 -50 Max . Typ .
-25
0
25
50
75
100
125
Vcc Supply Voltage (V)
Temperature ( oC)
Figure 24A Vcc Supply Current vs Temperature
40
40
Figure 24B Vcc Supply Current vs Voltage
Logic "1" Input Bias Current (uA)
35 30 25 20 15 Max. 10 5 0 Typ -50 -25 0 25 50 75 100 125
Logic "1" Input Bias Current (uA)
35 30 25 20 15 10 5 0 10 12 14 16 18 20 Typ Max.
Temperature ( o C)
Vcc Supply Voltage (V)
Figure 25A Logic "1" Input Current vs Temperature
Figure 25B Logic "1" Input Current vs Voltage
5
5
Logic "0" Input Current (uA)
3 2 Max. 1 0 -50
Logic "0" Input Current (uA)
4
4 3 2 Max. 1 0 10 12 14 16 18 20
-25
0
25
50
75
100
125
Temperature ( oC)
Vcc Supply Voltage (V)
Figure 26A Logic "0" Input Current vs Temperature
Figure 26B Logic "0" Input Current vs Voltage
12
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
5
"High" CS Bias Current (uA) "High" CS Bias Current (uA)
5 4 3 2 Max. 1 0 10 12 14 16 18 20
Vcc Supply Voltage (V)
4 3 2 Max. 1 0 -50
-25
0
25
50
75
100
125
Temperature ( oC)
Figure 27A "High" CS Bias Current vs Temperature
5
"Low" CS Bias Current (uA) "Low" CS Bias Current (uA)
Figure 27B "High" CS Bias Current vs Voltage
5 4 3 2 Max. 1 0
4 3 2 Max. 1 0 -50 -25 0 25 50 75 100 125
Temperature (o C)
10
12
14
16
18
20
VCC Supply Voltage (V)
Figure 28A "Low" CS Bias Current vs Temperature
Figure 28B "Low" CS Bias Current vs Voltage
15
15
VBS UVLO Threshold + (V)
14 13 12 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature oC) Temperature ((C) Max. Typ. Min.
VBS UVLO Threshold + (V)
14 13 12 11 10 9 8 7 6 10 12 14 16 18 20 M in. Max. Typ
VCC Supply Voltage (V) (V) Vcc Supply Voltage
Figure 29A VBS Undervoltage Threshold (+) vs Temperature (IR2127/IR2128)
Figure 29B VBS Undervoltage Threshold (+) vs Voltage (IR2127/IR2128)
www.irf.com
13
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
15
15
VBS UVLO Threshold - (V)
13 12 11 10 9 8 7 6 -50 -25 0 25 50 75 100 125 Temperature (C) Min. Max. Typ.
VBS UVLO Threshold - (V)
14
14 13 12 11 10 9 8 7 6 10 12 14 16 18 20 Min. Typ. Max.
Temperature ( o C)
Vcc Supply Voltage (V)
Figure 30A VBS Undervoltage Threshold (-) vs Temperature (IR2127/IR2128)
Figure 30B VBS Undervoltage Threshold (-) vs Voltage (IR2127/IR2128)
500
500
Output Source Current (mA)
400 Typ. 300 200 100 0 -50 Min.
Output Source Current (mA)
400 300 200 100 Min. 0 10 12 14 16 18 20
Typ.
-25
0
25
50
75
100
125
Temperature ( o C)
VBIAS Supply Voltage (V)
Figure 31A Output Source Current vs Temperature
Figure 31B Output Source Current vs Voltage
800
800
Output Sink Current (mA)
600 500 400 300 200 100 0 -50
Typ.
Output Sink Current (mA)
700
700 600 500 400 300 200 100 0 10 12 14 16 18 20 Min. Typ.
Min.
-25
0
25
50
75
100
125
Temperature ( oC)
VBIAS Supply Voltage (V)
Figure 32A Output Sink Current vs Temperature
Figure 32B Output Sink Current vs Voltage
14
www.irf.com
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
Case outlines
8-Lead PDIP
D A 5 B
F OOT PRINT 8X 0.72 [.028]
01-6014 01-3003 01 (MS-001AB)
INCHES MIN .0532 .013 .0075 .189 .1497 MAX .0688 .0098 .020 .0098 .1968 .1574 MILLIMETERS MIN 1.35 0.10 0.33 0.19 4.80 3.80 MAX 1.75 0.25 0.51 0.25 5.00 4.00
DIM A b
A1 .0040 c
8 6 E 1
7
6
5 H 0.25 [.010] A
6.46 [.255]
D E e e1 H K L
8X 1.78 [.070]
2
3
4
.050 BAS IC .025 BAS IC .2284 .0099 .016 0 .2440 .0196 .050 8
1.27 BAS IC 0.635 BAS IC 5.80 0.25 0.40 0 6.20 0.50 1.27 8
6X
e e1 A C
3X 1.27 [.050]
y
K x 45 y
0.10 [.004] 8X b 0.25 [.010]
NOT ES : 1. DIMENSIONING & TOLE RANCING PER AS ME Y14.5M-1994. 2. CONT ROLLING DIMENSION: MILLIME TER 3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHE S]. 4. OUTLINE CONFORMS T O JEDEC OUT LINE MS-012AA.
A1 CAB
8X L 7
8X c
4. OUT LINE CONFORMS T O JEDE C OUTLINE MS-012AA. 5 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.15 [.006]. 6 DIMENS ION DOES NOT INCLUDE MOLD PROT RUS IONS. MOLD PROTRUSIONS NOT T O E XCEED 0.25 [.010]. 7 DIMENS ION IS T HE LE NGT H OF LEAD FOR SOLDERING T O A SUBS TRAT E.
8-Lead SOIC www.irf.com
01-6027 01-0021 11 (MS-012AA)
15
IR2127(S) / IR21271(S) / IR2128(S) & (PbF)
ORDER INFORMATION Basic Part (Non-Lead Free) 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S order order order order order order IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S Lead-Free Part 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC 8-Lead PDIP 8-Lead SOIC IR2127 IR2127S IR21271 IR21271S IR2128 IR2128S order order order order order order IR2127PbF IR2127SPbF IR21271PbF IR21271SPbF IR2128PbF IR2128SPbF
This product has been designed and qualified for the Industrial market. Qualification Standards can be found on IR's Web site. Data and specifications subject to change without notice. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 09/08/04
16
www.irf.com


▲Up To Search▲   

 
Price & Availability of IR21271

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X